

Australian Government

Neutron (X-ray) Reflectometry Round Robin

Andrew Nelson Joseph Dura, Robert Newby, Jessie Zhange, Charles Majkrzak (NIST – NCNR and CNST)

Aim – Reproducible science

Different type of reflectometers

Platypus - ANSTO

MAGIK - NIST

SNS liquids reflectometer

Aim – Reproducible Science

- Reproducible data
- Reproducible analysis

Reproducibility - we're all different

- Energy / Angle dispersive
- Different resolution functions
- Vertical / horizontal geometry
- Illuminated area
- Reduction algorithms
 - Background subtraction
 - Footprint correction
 - Rebinning
 - Scaling
 - Different configurations
 - TOF corrections
 - Resolution function calculation
 - Constant Q integration

dQ/Q Q

Error propagation

SANS round robin

Journal of Applied Crystallography

ISSN 0021-8898

Received 12 March 2013 Accepted 14 July 2013

Learning about SANS instruments and data reduction from round robin measurements on samples of polystyrene latex¹

Adrian R. Rennie,^a* Maja S. Hellsing,^a Kathleen Wood,^b Elliot P. Gilbert,^b Lionel Porcar,^c Ralf Schweins,^c Charles D. Dewhurst,^c Peter Lindner,^c Richard K. Heenan,^d Sarah E. Rogers,^d Paul D. Butler,^e Jeffery R. Krzywon,^e Ron E. Ghosh,^f Andrew J. Jackson^g and Marc Malfois^h

^aMaterials Physics, Uppsala University, Box 516, SE-75120 Uppsala, Sweden, ^bBragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia, ^cInstitut Laue–Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9, France, ^dISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, UK, ^eNIST Center for Neutron Research, 100 Bureau Drive, MS 6100, Gaithersburg, MD 20899-6100, USA, ^fDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK, ^gEuropean Spallation Source ESS AB, PO Box 176, SE-221 00 Lund, Sweden, and ^hDiamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE, UK. Correspondence e-mail: adrian.rennie@physics.uu.se

What was measured?

Rennie et al,. Learning about SANS instruments and data reduction, J. Appl. Cryst., 46 (2013)

Lessons learnt

- Majority of I(Q) difference is due to resolution effects
 - Resist temptation to arbitrarily scale data at different instrument configurations.
- Deficiencies in metadata
 - Sometimes resolution smearing was underestimated
 - Sometimes a lack of resolution function information
 - Identified areas were improvements could be made (e.g. collimation and wavelength resolution are linked)
- Highlighted need for multiple scattering corrections
- Uncertainty in fitted parameters limited by systematic errors in calibration and modelling, not counting statistics.
- Standardised datasets can be used to document different sources of error.

Background - reflectometry

- X-ray reflectometry round robin, Colombi, 2007
 - GaAs / AlAs multilayer
 - 20 laboratories
 - Differences in analysis approach are non-negligible
 - Dynamic range important

Frederic Ott, 2005, http://neutronreflectivity.neutron-eu.net/main/RoundRobin

Comparative assessment

Colombi et al, J. Appl.Cryst. (2008), 41, 143

Sample choice

- Non magnetic
- Reflectivity insensitive to contaminants
- Robust
- Uniform film
- Low sample warp
- Test instrumental resolution
- Test scaling
 - Si₃N₄
 - 600-700 Å
 - SLD ~ 5.9 × 10⁻⁶ Å⁻²

Si3N4 deposition

Schematic from www.crystec.com

Initial measurements (X-rays)

Deposition Characteristics

Best of the crop

0.85% thickness variation over 'sweet spot'

Roadmap

Comparative assessment

Colombi et al, J. Appl.Cryst. (2008), 41, 143

Advice please

- Community interactions
 - How does one maximise participation?
- What are the pitfalls (handling 'skeletons in cupboard')?
- At what stage should data be freely available?

19-23 July 2015 / Novotel Manly Pacific / Sydney Australia

AOCNS

Call for Abstracts **still open** for Poster or Workshop presentations. Early-bird registration until **30 April 2015**.

2015.com