Absolute Scattering Standards

Scott Barton¹ and Karsten Joensen²

¹Molmex Scientific Inc, Northampton, MA USA scott@molmexscientific.com

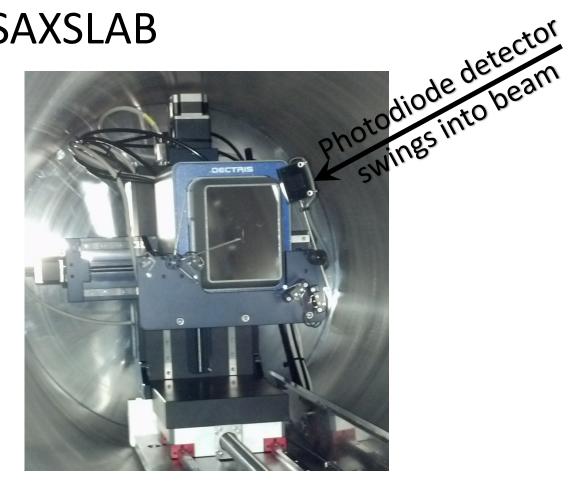
²SAXSLAB US, Northampton, MA USA karsten.Joensen@saxslab.com

Absolute Scattering Standards

Why should we care?

- Compare scattering data from different instruments laboratory SAXS, Synchrotron SAXS, SANS.
- For Standardless absolute scattering, a universal standard provides a self-consistent check.
- Desirable Qualities for a Standard
 - Strong Scatterer so that Background is orders of magnitude lower intensity
 - Relatively uniform from batch to batch
 - Stable over time
 - Free Standing No windows to subtract
 - Definitive Peak or Plateau
- Glassy Carbon (GC) is a good candidate
 - Pro: Plateau in SAXS is a good reference intensity
 - Con: relies on a standardless scattering instrument for calibration and we don't have clear consensus to its value.

Water Standard Comments


- Water or other low Z liquids are poor choice for reference
- Long laboratory integration times (>30 min) for both sample and container
- Relies on subtraction of 2 weak signals cell with and without sample
- Noise is usually larger than desired precision.
- Compressibility limit requires linear or second order fit $I(q) \rightarrow 0$ is not a flat line.
- Flat window cell non-trivial in vacuum because path length can change from differential pressure against windows.
- Capillary cells have unknown Inner Diameter and curvature presents nonconstant path length.

Standardless Measurement

Ganesha from SAXSLAB

Characteristics

- Sealed Tube Microsource with 2D Multilayer Optic (Cu or Mo).
- 2 or 3 Aperture ("scatterless" slits).
- Moving Pilatus 300 Detector (172 x 172 mm² pixel size) in vacuum. Continuous SAXS to WAXS like a SANS line.
- Non-Paralyzable Deadtime correction applied internally and calibrated by Dectris.
- Can measure 1MCps/pixel/sec.
- Use the flat field correction provided by Dectris.
- Photodiode used to measure direct beam and transmission, calibrated to the Pilatus.

Absolute Scattering for Strong Scatterer

 η_1 and η_2 are efficiencies for direct beam and scattered intensities, respectively. These are equal if the photodiode is scaled to the Pilatus.

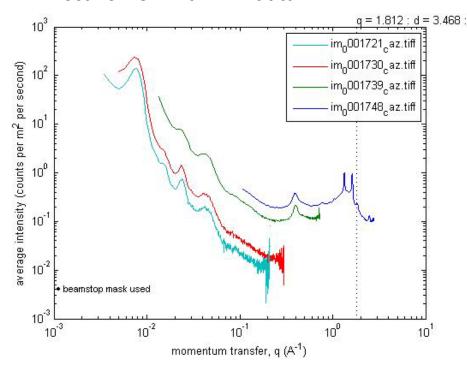
 Φ is the incident beam flux and A is the area. Φ A is the total incident intensity in ph/s. t is the measurement time.

T is the transmission measured by the photodiode with and without sample. δ is the sample thickness.

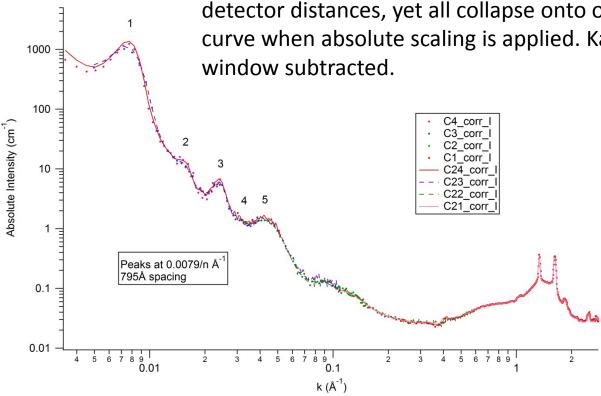
 $\Delta\Omega$ is the solid angle of detector for a given pixel. Its value is $\frac{p^2}{L^2}/\{\cos(2\theta)\}^{-3}$, where the $\cos(2\vartheta)^{-2}$ accounts for the pathlength at higher angles and the additional $1/\cos(2\vartheta)$ factor is the projection cosine of the pixel normal to the scattered beam.

Background Corrections: Cosmic Ray Corrections only. Measurement in Vacuum

$$I(q) = \frac{1}{V} \left(\frac{d\mathbf{o}}{d\Omega} \right), \quad q = \frac{4\pi \sin(\theta)}{\lambda}$$


$$= \frac{\eta_2 I_{ij}}{\eta_1(\phi A)Tt} \frac{1}{\Delta \Omega} \frac{1}{\delta}$$

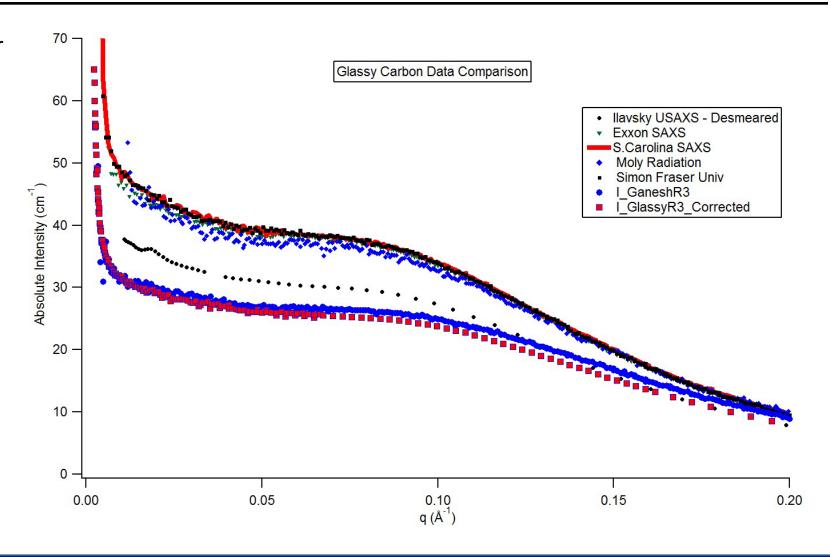
Background


Motivation

No Scaling Applied. Angularly integrated scans from Raw 2D data

These data were collected in both 2 and 3 aperture geometries, different sample-to-detector distances, yet all collapse onto one curve when absolute scaling is applied. Kapton window subtracted

Additional Pilatus Corrections



- Scans are composed of addition of shorter frame scans
 - Frame time adjustable 0.1s to 15sec typical
- Cosmic ray corrections applied by looking for aboveaverage events within a given frame compared to the final additive image.
- Vacuum measurement in minutes. No significant background signal
- No readout noise with Pilatus

Comparison of Glassy Carbon Results

- Ilavsky USAXS are data provided for sample M12
- The upper cluster of points are scattering on the M12 sample measured at different Ganesha SAXS instruments and another equipped with Moly Ka using the SAXSLAB reduction routine.
- The lower 2 curves are for the R3 sample measured directly at the APS USAXS and on the UMASS Ganesha

Observations and Conclusions

- The M12 measurements are consistent on the different Ganesha instruments (with Cu Ka) and also on another instrument with Moly Ka.
 - The M12 Ilavsky data are scalable to our measurements.
- The R3 Measurements agree, once the thickness for the APS sample is corrected from 1mm to .885mm.
- We have to conclude that
 - The M12 sample provided has the incorrect calibration curve. To our understanding, this sample was not measured directly, but rather was a sample selected from a statistically measured batch. It is an outlier.
 - The R3 sample we received was measured by Jan Ilavsky directly at APS.
 The sample thickness was assumed to be 1mm, but it is actually .885mm +/-.005 thick. The APS data were adjusted (divided by 0.885) and are within 5% of our measured data.